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Using ;(-bounding (lower bounds by Laplacians with mixed boundary con- 
ditions and discrete analogs), we obtain the Lifschitz exponent at the bottom of 
the spectrum for random operators of type Ho)= T+ V~o, with T a (periodic) 
generator of a positivity-preserving semigroup, extending results by Kirsch and 
Simon. 
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1. I N T R O D U C T I O N  A N D  D ISCUSSION 

Recently Kirsch and Simon ~6) considered the asymptot ic  behavior  near the 
bo t tom of the spectrum of the integrated density of states k(E)  of the 
periodic plus r andom Schr6dinger operators  

H ~ = T + V o ~  (1) 

where the "kinetic" energy opera tor  incorporates  a periodic potential:  

T =  - A  + Upe r (2) 

with Uper(X+a)-=gper(X), a ~ Z  ~t, UpereLfoc Na) with p = 2  for d ~ 3 ,  
p = 2 + e for d = 4, and p = d/2 for d ~> 5. The r a n d o m  potential  mimics a 
distribution of  impurities in the crystal described by T: 

V~o(x) = ~ qi(~o) u ( x - -  i) (3) 
i ~ Z  d 

1 Institutul de Fizica si Tehnologia Materialelor, Bucuresti-Magurele, Romania. 
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where the source potential u(x)>~O, and for large Ix] is either rapidly 
decreasing or 

u(x)= O(]xl a-s) (4) 

for some ~ > 0. One has u ~ LP(IR a) with p as above. The qi(~o) are indepen- 
dent, identically distributed random variables. Their distribution function/~ 
has compact support,/~[a] < 1, a = min supp/~, and #[a, a + 5] = O(e 6) for 
some 6/> 0. 

In our case, the relevant definition of the integrated density of states is 

k(E)= l im  IAI ~ ~/(E,  HA) (5) 
A $ ~  a 

where H A is any restriction (defined by boundary conditions) of a typical 
realization of H to the compact domain A; X ( E ,  X) is the number of the 
eigenvalues of the operator X that are less than E. 

Another interesting class of random operators are the finite-difference 
ones on 12(Za), which are given by the sum, Eq. (1), of a periodic "kinetic 
energy" T, 

(Tf)(n) = - 2 I(n, rn)f(rn) (6) 
nf f  ~ d 

with periodic coefficients 

I(n + a, m + a) = I(n, m) (7) 

Va= Kb, b E 7J for some K e N ,  and with V~ a multiplicative operator 
given by Eq. (3) with x replaced by n. 

The main result of this paper is the following: 

T h e o r e m  1. Let H~, Eq. (1), be either a continuum Schr6dinger 
operator on L2(~ d) satisfying the conditions (2)-(4), or a discrete operator 
on /2(Ea), Eqs. (6), (7), (3)-(4), with nonnegative I(n, m) of finite range 
I(n,m)=O, I n - m l > A ,  and mini, ml=lI(n,m)>O. Then k(E) has a 
Lifschitz singularity at Eo = min Sp Ho~: 

in Iln k(E)l 
lim - 2 (8) 
~+E0 l n ( E -  Eo) 

where the Lifschitz exponent is 

)~ = d/min(2, ~) (9) 

Remarks. 1. The restriction to E u is only for simplicity of notation; 
other periodic lattices may be considered. As will be apparent from the 
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proof, in the discrete case the conditions of finite range and nearest 
neighbor connectedness on I(n, m) can be somewhat relaxed. 

2. It is perhaps worth mentioning that all proofs of Lifschitz 
singularity(1 3,5,6,9-12,16 18,20~22) are for the lowest spectral edge of generators 
of positivity-preserving semigroups, or the problem may be mapped, as in 
Ref. 12, onto one with this property. Hopefully, this apparent restriction is 
technical, due to the difficulty of characterizing the other fluctuative 
spectral edges. (8) The most interesting cases for applications, such as 
internal edges for continuum operators, remain unproven. 

Kitsch and Simon (6) proved Theorem 1 in the continuum case under 
the additional restriction that either d =  1 or the periodic potential is inver- 
sion-invariant: 

Uper (xl , ' ' ' ,  -- XJ,'", X d ) =  Uper(Xl ..... xj,.. . ,  x j )  

for all 1 ~< j ~< d. 
The dependence of the Lifschitz exponent on ~ for slowly decaying 

impurity potentials, Eq. (9), appeared in the work of Pastur, (~8) who 
obtained the leading term of the asymptotic expansion of k(E)  as E $ 0 for 
Uper = 0 and a Poisson distribution of scatterers with smooth u. This can be 
understood with the help of a nonrigorous argument patterned on the 
original one by Lifschitz3 8) 

Let E 0 ~ Sp H~ be a fluctuative spectral edge of H, i.e., Sp H~o fills one 
side of a neighborhood of Eo where it is pure point and the eigenfunctions 
reside on local large deviations from the average configuration of the 
potential. Assume that E o is a generalized eigenvalue of T (Tfo = Eofo has a 
(polynomially) bounded solution). Let f~0 be an eigenfunction of a typical 
realization ~o 0 of H~ : 

H~oof'~ ~ = E f~  ~ (10) 

with E =  Eo + r/. For small [~/[ assume that f~0 = ~Pfo, where the envelope 
function (p is slowly varying inside and decays exponentially outside the 
domain of localization Q. The function f o(X ) = f o ( x  + y(x)),  with y(x) ,  the 
"phase modulation" function, 2 slowly varying in (2. Then Y:,k = ?yjOxh = 
O([(2[ l/a) and we can estimate the excess "kinetic energy" by 

( T -  Eo ) = (f~0, ( T -  Eo) f~0) = cr/~ cons t- ]f21 -2/d 

We may decompose ( V , o o ) = ( 1 - c ) r /  into a contribution from the 
impurities in the domain of localization (2 and one from those outside. 

z The "phase modulation" is needed to compensate the "phase" mismatch between)Co and f r  o, 
which are both rapidly varying and have many zeros for general edges. There is some 
numerical evidence 115~ for long-range phase correlations. 
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Since outside f2 the situation is "average," the outside contribution 
may be significant only for power-law-decaying impurity potentials and 
(//out) ---const. If2[-~/u [-with e defined by Eq. (4)]. We see that, assuming 
comparable constants, ( T - E o )  + (Vom)-~const .  1s with 2 the 
Lifschitz exponent defined by Eq. (9) and 

t / ~ -  c o n s t  - ts 1/2 q_ ( Vi n ) (11) 

Let Po(O,t /)=Prob{the sources q;(e~), ief2, are such that V~= is 
localizing and [( Vin)[ < [t/I }. Then, from Eqs. (5) and (11) we can estimate 

[k(Eo + ~l)-k(Eo) I ~- max Po(f2, r 
Q 

I#I < lql 

Now we may reasonably expect that In P0((2, 3) is extensive for large 
t? and small [~ [ : lnPo(O,~)~- I f2 l f (~ ) ,  with f(~) having at most a 
logarithmic singularity for ~ ~ 0. (m Then, 

In Ik(Eo + t/) - k(Eo)l ~ -x(t/)/lt/I; (12) 

E o + t / c S p  H~o with ~c(t/) having at most a logarithmic singularity. This 
type of argument can also be used to glean some information on the shape 
of the Lifschitz tail beyond its tip a t  Eo. (13) 

The recent proofs of Lifschitz singularity for various 
models (s'6'~'~2'2~ can be regarded as rigorous implementations of the 
Lifschitz argument by partitioning Nd(Za) into (congruent) nonoverlapping 
domains and bracketing H~o by direct sums of (nearly) statistically indepen- 
dent domain operators 

| H4o,, <H= | HIo+ (13) 
a a 

whose integrated densities of states will bracket (in reverse order) k(E). 
Since the simplest way of constructing domain operators with the required 
properties is Dirichlet-Neumann bracketing (or its analog for finite- 
difference operators) this method was chosen in practice. 

As is apparent from Kirsch and Simon (6) [-who proved Eq. (8), with 
lira replaced by lira sup and = by ~<, without restrictions on Uper in the 
continuum case], Neumann bounding does not work well for our problem. 
Replacing it with g-bounding, which uses suitably adjusted mixed boun- 
dary condition Laplacians instead of the Neumann ones, in the continuum 
case, and an analogous construction in the discrete case, we shall use the 
same Dirichlet form machinery for the eigenvalue estimates. In the discrete 
case we shall need an analog of the Dirichlet form, which will be 
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introduced in the next section. Since our proof follows closely the strategy 
of Kirsch and Simon, only the generalization of some propositions dealing 
with eigenvalue estimations from that paper will be given; see Ref. 6 for the 
probabilistic estimates, which remain the same. In the rest of this section 
we shall define the x-bounding. 

Let A ~ 7U be a convex polyhedron and S(A) its boundary. ~ One can 
define an extension operator that maps any element f of the Sobolev space 

W~(A) = { f sL2(A):  ,IfllZ~(A) = ;A (IVfl2 + I f i2)dx< oo} 

into W~l = W~I(Na), with, (23) 

IJE/II w7 ~< A Ilfil W~(A) 

Thus, W~(A) coincides with the space of restrictions to A of the elements of 
W~l. Let f ~  W~(A); then its restriction to a hyperplane (Na- l )  belongs to 
L2(~d-  i), 23 

Nf I'll L~ ~<, 'l ~ B I lf l l w~A) 

Then, for any real 7~ ~ L~176 the quadratic form 

IVf(x)i dx+f  X(x) lf(x)l dm (14) 
(A) 

is semibounded, 

QA.x(f) >i --c HZJIL~(S(A)) [Iflr2W~(A) 

and closed with W~(A) as the form domain. By standard results, (19) Q,~,x 
defines a unique self-adjoint operator: - A  A'z, the Laplacian with mixed 
(~-) boundary conditions on S(A). 

Remarks. 1. The Neumann Laplacian A A'N coincides with A "~'x for 
;~=0; the Dirichlet Laplacian A A'D can be obtained by taking the limit 
)~(x)T oo a.e. on S(A). 

2. Using stronger restriction and embedding theorems, (23) one can 
define A A,z for X- = �89 with q >  1 for d = 2  and q>~d-1 
for d~> 3. ~14) 

A useful property of these operators is the possibility to bound them 
from below in the sense of forms by direct sums of operators of the same 
type with suitably chosen )~. 

3 This is a particular example of domain with minimally smooth boundary (Ref. 23, Chap- 
ter VI), for which the extension operator can be constructed. 
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Proposit ion 1. (z-bounding). Let the plane L" divide the convex 
polyhedron A c R d  into two convex polyhedra, AlC~A2=X. Let 
q~ ~ L~ Then for any Z e L~(S(A)) ,  

- -  A A ' z  ~ --A re'z1G A A2'~2 (15) 

in the sense of forms. Here 

z,(x) = [z(x), .  
~( - 1 ;  q~(x), 

x e S(A,) c~ S(A) 
x ~ S  (i= 1, 2) (16) 

ProoL The inclusion relation for the form domains is obvious. Let 
f =  W~I(A ). Then, 

= Qa,,~,(f P~,) + Qa2,~2(f ~2) 

The last equality follows by adding and subtracting ~ o  I f  ladS and 
collecting the terms that make up the two quadratic forms. | 

For discrete operators we use the obvious inequality 

a .< 0 
0 ]a] X -1 ) 

which is valid for any 0 < Z < ~ .  Let A c 7/d and the discrete operator T, 
Eq. (6). The boundary of A is S(A)=  {n e A: 3m s Zd\A, I(n, m ) r  Note 
that S(A) depends on T, but we shall not clutter the notation. Let PA be 
the characteristic function of A. Let T A'P = Pa TPA be the restriction of T 
to functions with supp f c A. We define for each finite function Z with 
supp Z ~ S(A) 

T a'x= TA 'e+K s(A) (17) 

where the boundary operator associated with Z is given by 

(KS(af)(n) = z(n) f (n )  (18) 

Proposit ion 2 (z-bracketing). LetY_d~A=AlwA2,  A l c ~ A 2 = ~ ,  
and let T a'z be given by Eqs. (6), (17), and (18). Then, for any q0 defined 
on S(A1)• S(A2) with values in R+, 

TAI'Z? (~ Ta2'x; ~ TA'z ~ T At'x? G T a2'x+ (19) 
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where 

z+(n) = z ( n ) _  ~ II(n, m)] q0(m) 1-2i (20) 
m ~ S ( A  3 _ i) 

for n e S(Ai), i= 1, 2. 

Remark. The discrete case is simpler. Since we do not have domain 
problems, upper bounds are also possible. The discrete Dirichlet and 
Neumann bracketing of Refs. 20 and 1 l is the particular case when T is the 
finite-difference Laplacian and ~0 = 1. 

2. S K E T C H  OF P R O O F  

The main difference from the case of short-range source potentials lies 
in the fact that the domain operators are no longer statistically indepen- 
dent and the contribution of neighboring domains may even dominate that 
of the "kinetic" energy. For the large deviations that are the only con- 
tributors to k(E) near E 0 this poses no problem, since they are practically 
independent. 

As noted above, for the continuum case the lira sup half is already 
proven. In the discrete case we need only to generalize Proposition 5 of 
Kirsch and Simon. 

The main problem with the generalizations to the discrete case is the 
difficulty of characterizing and working with the (non 12) generalized eigen- 
functions of T, which correspond to the edge. Generally speaking, these are 
not positive and there may be several of them (degenerancy). This 
precludes the use of the nice apparatus of Dirichlet forms. The only case in 
which we could define a positive generalization of the Dirichlet form to the 
discrete case is when I(n, m ) > 0 ,  i.e., T(and H~o) generates a positivity- 
preserving semigroup. 

Before proceeding further, we need to define another type of restriction 
of T to cubes with sides commensurate with the periodicity cell. 4 Let 
A r = { m e Z d :  O<~mj<~KL-1,  j = l ,  2,...,d} and for each n e Z  d let 
n(mod L ) e A  L be the corresponding element with coordinates reduced 
modulo KL. The periodic restriction of T, Eqs. (6), (7), to AL is defined by 

(TLerf)(n) = -- Y. IL(n, m ) f ( m )  (21) 
m e A L  

with n e A t ,  and 

IL(n, m ) =  ~ I(n, k) (22) 
k ( m o d  L )  = m 

4 Or congruent lattice tiling domains, like inflations of the Wigner-Seitz cell for lattices other 
than Z a. 
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Let Eo be the lowest eigenvalue of T~e r : 

Tlperhl =Eoh 1 (23) 

If I(n,m) satisfies the assumptions of Theorem l, then, by the 
Perron-Frobenius theorem, E o is nondegenerate and hi(n)> 0. Let h be the 
periodic continuation of hi. Then, P~Lh = hL > 0 is the unique ground state 
of T~e r, with the same ground-state energy Eo. Indeed, replacing f by h in 
Eq. (21), its rhs will coincide, by periodicity of h, with the lhs of Eq. (23). 
Thus, 

min Sp T = Eo 

Since h(n)>0,  we may associate to each fEl2(7/a) an "envelope" 
function ~0 e i2(~d;  h2), 

~o(n) = f(n)/h(n) (24) 

and define the Dirichletform of T by 5 

1 
~(~o) = (f, ( T - E o )  f ) = 5  ~ I(n, m) h(n) h(m) I~0(n)- ~0(m)[ ~ (25) 

n,m 

Proposition 3. (Proposition 5 of Ref. 6). Let T be a finite- 
difference, self-adjoint periodic operator o n  12(•a), Eqs. (6), (7), with non- 
negative and connected I(n, m). Then, for any nonnegative Z, the lowest 
eigenvalue of the restriction T aL'z satisfies 

21(T &'z) ~> infSp T+ cL -2 (26) 

Proof. Let v be a C~ function with supp v ~ B1/3 (the ball in R a with 
radius= 1/3) and v(x)= 1, x~B1/4. Take f=~ph with ~o(n)=v(n/KL) as 
trial function: 21(T AL'x) --  Eo ~< ~(~o) [[fl[-2. But, 

~(~o) ~< const- AL d-2 max h2(n) 
n 

[If I[ 2 ~ const. L a ~ h2(n) | 
n E A 1  

Let A~, a ~ Z a, be the translation by KLa of A L. Let X~ be given by 

1 ~h Is (27) Z~- h On (A~ 

5 To obtain Eq. (25), we need I(n, m) to be real and, of course, h(n) 4=0. 
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in the continuum case and 

z~(n) = - • I(n, m) h(m____)) (28) 
rn = n(mod  L) h ( f / )  

n~m 

in the discrete case. By Proposition 1 (resp. Proposition 2), we can bound 
T from below by 

T>>. @ V ALz; (29) 
a 

since in the continuum case, Eq. (27), Z~+ b _  Z L - 0  if l a - b l = l  and, 
respectively, has the form required by Eq. (20). In the one-dimensional and 
reflection-invariant cases considered by Kirsch and Simon this reduces to 
Z~ = 0, i.e., to Neumann bounding. Replacing in their proof the Neumann 
bounds by Eq. (29), we need the following result. 

P r o p o s i t i o n  4 (Proposition 2 of Ref. 6). Let T AL'z (A L a cube of 
side L) be either a Schr6dinger operator on LZ(Ac), Eq. (3), or as in 
Proposition 3. Let h > 0 be the eigenfunction corresponding to 2~(T). Then 
the splitting between the first two eigenvalues of T AL'X satisfies 

= A 2 ( T  AL'z ) - -  )~l (T  AL'z) ~ cL--2 (30) 

Remark. We could have used the comparison theorem for the gap 
between the first two eigenvalues (7) for proving Proposition 4. The method 
given below can also be used for proving a similar comparison theorem for 
'~n - -  1]~1 " (14 )  

ProoL By the minmax principle 

22(T AL'X) = sup inf ( f  TAL'zf) 
y~ D(r) (f, f )  

g (g,f)=O 

We introduce the envelope functions g = vh, f = ~oh, 

5 = s u p  inf ~(~0) (31) 
(~,~o)h=o (q~, cp) h 

where ( . , -)  is the scalar product in LZ(AL; h 2 dx), respectively 12(AL; h2), 
and ~(~0) is the Dirichlet form of T AL'x given by ~(~o)=~AL h2 [Vq~[ 2dx in 
the continuum case and by Eq. (25) for the discrete one. Let sup h(x)= h+, 
infh(x) = h . The inf may be taken now over functions in 

= { 0 E L2(A; h 2 dx): (V) V~o ~ L2(A L ; h2 dx), a~o/an ~S~AL) = 0 } 
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for the cont inuum case and 12(AL;h 2) for the discrete case. But 
~(~o) ~> h~ ~o(~O), 2 Ilq~llh~<h+ I]~pll 2, where ~o(q~) is the Dirichlet form for 
h(x) = 1, x ~ A L .  Then, taking 7 =70 = 1/h2, we obtain 

fi >7 inf SAL~x=O ~AL I~012 dx - \-L--~+ J 

in the cont inuum case. For  the discrete case one can replace I(n, m) with 
minqn ml-  1 I(n, m) for In -- ml = 1 and 0 otherwise.  | 
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